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Abstract—We present an approximation scheme for op-
timizing certain Quadratic Integer Programming problems
with positive semidefinite objective functions and global lin-
ear constraints. This framework includes well known graph
problems such as Minimum graph bisection, Edge expansion,
Uniform sparsest cut, and Small Set expansion, as well as the
Unique Games problem. These problems are notorious for the
existence of huge gaps between the known algorithmic results
and NP-hardness results. Our algorithm is based on rounding
semidefinite programs from the Lasserre hierarchy, and the
analysis uses bounds for low-rank approximations of a matrix
in Frobenius norm using columns of the matrix.

For all the above graph problems, we give an algorithm
running in time nO(r/ε2) with approximation ratio 1+ε

min{1,λr} ,
where λr is the r’th smallest eigenvalue of the normalized
graph Laplacian L. In the case of graph bisection and small
set expansion, the number of vertices in the cut is within
lower-order terms of the stipulated bound. Our results imply
(1 + O(ε)) factor approximation in time nO(r∗/ε2) where r∗
is the number of eigenvalues of L smaller than 1 − ε. This
perhaps gives some indication as to why even showing mere
APX-hardness for these problems has been elusive, since the
reduction must produce graphs with a slowly growing spectrum
(and classes like planar graphs which are known to have such
a spectral property often admit good algorithms owing to their
nice structure).

For Unique Games, we give a factor (1+ 2+ε
λr

) approximation
for minimizing the number of unsatisfied constraints in nO(r/ε)

time. This improves an earlier bound for solving Unique Games
on expanders, and also shows that Lasserre SDPs are powerful
enough to solve well-known integrality gap instances for the
basic SDP.

We also give an algorithm for independent sets in graphs
that performs well when the Laplacian does not have too many
eigenvalues bigger than 1 + o(1).

Keywords-Approximation algorithms; graph partitioning;
unique games; semidefinite programming.

I. INTRODUCTION

The theory of approximation algorithms has made major
strides in the last two decades, pinning down, for many basic
optimization problems, the exact (or asymptotic) threshold
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up to which efficient approximation is possible. Some no-
torious problems, however, have withstood this wave of
progress; for these problems the best known algorithms
deliver super-constant approximation ratios, whereas NP-
hardness results do not even rule out say a factor 1.1 (or
sometimes even a factor (1 + ε) for any constant ε > 0) ap-
proximation algorithm. Examples of such problems include
graph partitioning problems such as minimum bisection,
uniform sparsest cut, and small-set expansion; finding a
dense subgraph induced on k vertices; minimum linear
arrangement; and constraint satisfaction problems such as
minimum CNF deletion or Unique Games.

There has been evidence of three distinct flavors for
the hardness of these problems: (i) Ruling out a poly-
nomial time approximation scheme (PTAS) assuming that
NP 6⊂

⋂
ε>0 BPTIME(2n

ε

) via quasi-random PCPs [1],
[2]; (ii) Inapproximability results within some constant
factor assuming average-case hardness of refuting random
3SAT instances [3]; and (iii) Inapproximability within super-
constant factors under a strong conjecture on the intractabil-
ity of the small-set expansion (SSE) problem [4]. While
(iii) gives the strongest hardness results, it is conditioned
on the conjectured hardness of SSE [5], an assumption that
implies the Unique Games conjecture, and arguably does not
yet have as much evidence in its support as the complexity
assumptions made in (i) or (ii).

In this work, we give a unified algorithm, based on pow-
erful semidefinite programs from the Lasserre hierarchy, for
several of these problems, and a broader class of quadratic
integer programming problems with linear constraints (more
details are in Section I-A below). Our algorithms deliver a
good approximation ratio if the eigenvalues of the Laplacian
of the underlying graph increase at a reasonable rate. In par-
ticular, for all the above graph partitioning problems, we get
a (1 + ε)/min{λr, 1} approximation factor in nOε(r) time,
where λr is the r’th smallest eigenvalue of the normalized
Laplacian (which has eigenvalues in the interval [0, 2]). Note
that if λr > 1− ε, then we get a (1 +O(ε)) approximation
ratio.



Perspective. The direct algorithmic interpretation of our
results is simply that one can probably get good approxima-
tions for graphs that are pretty ”weak-expanders,” in that we
only require lower bounds on higher eigenvalues rather than
on λ2 as in the case of expanders. In terms of our broader
understanding of the complexity of approximating these
problems, our results perhaps point to why even showing
APX-hardness for these problems has been difficult, as the
reduction must produce graphs with a very slowly growing
spectrum, with many (nΩ(1), or even n1−o(1) for near-linear
time reductions) small eigenvalues. Trivial examples of such
graphs are the disjoint union of many small components
(taking the union of r components ensures λr = 0), but
these are of course easily handled by working on each
component separately. We note that Laplacians of planar
graphs, bounded genus graphs, and graphs excluding fixed
minors, have many small eigenvalues [6], but these classes
are often easier to handle algorithmically due to their rich
structure — for example, conductance and edge expansion
problems are polynomial time solvable on planar graphs [7].
Also, the recent result of [8] shows that if λr = o(1) for
some r = nΩ(1), then the graph must have an n1−Ω(1) sized
subset with very few edges leaving it. Speculating somewhat
boldly, may be these results suggest that graphs with too
many small eigenvalues are also typically not hard instances
for these problems. �

Our results also give some explanation for our inability
so far to show strong integrality gaps for even 4 rounds of
the Lasserre hierarchy for problems which we only know to
be hard assuming the Unique Games conjecture (UGC). In
fact, it is entirely consistent with current knowledge that
just O(1) rounds of the Lasserre hierarchy could refute
the UGC, or even give an improvement over the 0.878
performance ratio of the Goemans-Williamson algorithm for
Max Cut. Complementing our algorithmic results for graph
partitioning problems, it has been recently shown in [9] that
even a linear number of rounds of the Lasserre SDP has a
constant factor integrality gap for Balanced Separator and
Uniform Sparsest Cut.

A. Summary of results

Let us now state our specific results. In the statements, we
will use OPT to denote the optimal value of the respective
optimization problem.

Graph partitioning. We begin with results for certain
cut/graph partitioning problems. Below λp denotes the p’th
smallest eigenvalue of the normalized Laplacian L of the
graph G, defined as L = D−1/2(I − A)D−1/2 where A is
the adjacency matrix and D is a diagonal matrix with node
degrees on the diagonal. (In the stated approximation ratios,
λr (resp. 2 − λn−r) should be understood as min{λr, 1}
(resp. min{2 − λn−r, 1}), but we don’t make this explicit
to avoid notational clutter.) The algorithm’s running time is

nOε(r) in each case. This runtime arises due to solving the
standard semidefinite programs (SDP) lifted with O(r/ε2)
rounds of the Lasserre hierarchy. Our results are shown via
an efficient rounding algorithm whose randomized running
time is nO(1); the exponential dependence on r is thus
limited to solving the SDP. We first state our result for
finding the minimum expanding set with given size/volume:
here the goal is given a graph G = (V,E) and a target
size (resp. volume) µ, to find a subset U ⊂ V with |U | = µ
(resp. Vol(U), defined as the sum of degrees of vertices in U ,
being equal to µ) that minimizes |E(U,U)|, the number of
edges leaving U . The result in fact works for edge-weighted
graphs.

Theorem 1 (Graph Bisection and Small Set Expansion).
Given 0 < ε < 1, positive integer r, a target size (resp.
target volue) µ, there exists an algorithm, running in time
nOε(r) to find a set U ⊆ V such that the total weight of
edges it cuts is at most

1 + ε

λr
OPT

and its size (resp. its volume) is within 1± ε factor of µ.
We can also handle boundary conditions stipulating that

U must contain some subset F of nodes, and avoid some
other disjoint subset B of nodes.

As a corollary of Theorem 1, we obtain the following.
The terminology used for the variants of graph partitioning
is standard, and detailed definitions and problem-specific
theorem statements can be found in the full version [10].

Corollary 2 (Graph Partitioning). Given 0 < ε < 1, positive
integer r, there exists a factor

1 + ε

λr

approximation algorithm, running in time nOε(r) for the
following problems.

• Uniform Sparsest Cut,
• Edge Expansion,
• Normalized Cut,
• Minimum Conductance,
• Their natural `-way extensions where the vertices of

the graph must be partitioned into ` parts.

As in Theorem 1, we can also handle boundary conditions.

PSD Quadratic Integer Programs. In addition to the
above cut problems, our method applies more abstractly
to the class of minimization quadratic integer programs
(QIP) with positive semidefinite (PSD) cost functions and
arbitrary linear constraints. In particular, given a PSD matrix
A ∈ R(V×[k])×(V×[k]), consider the problem of finding
x̃ ∈ {0, 1}V×[k] minimizing x̃TAx̃ subject to: (i) exactly
one of {x̃u(i)}i∈[k] equals 1 for each u, and (ii) the linear



constraints Bx̃ > c. We find such an x̃ with

x̃TLx̃ 6 (1 + ε)/min{1, λr(A)}

where A = diag(A)−1/2 · A · diag(A)−1/2. For the formal
statement, and the guarantee on the linear constraints, see
the full version [10].

Unique Games. We next state our result for Unique Games.

Theorem 3. Given any instance of Unique Games over a
domain size k on a constraint graph G, for all ε ∈ (0, 1)
and positive integer r, there exists an algorithm to find a
labeling that violates at most(

1 +
2 + ε

λr(L)

)
OPT

fraction of constraints in time (nk)O(r/ε), where OPT is
the total weight of unsatisfied constraints in the optimal
labeling.

In the special case of maximum cut / minimum uncut, the
bound can be improved to

min

(
1 +

2 + ε

λr(L)
,

1 + ε

2− λn−r(L)

)
OPT.

Furthermore any `-way section constraints (for e.g. max-
imum bisection) can be imposed, in which case all such
constraints will be satisfied within a factor of 1± o(1).

Note that in the case of Unique Games, we are only able
to get a weaker ≈ 1 + 2/λr approximation factor, which
is always larger than 2. In this context, it is interesting to
note that minimizing the number of unsatisfied constraints
in Unique Games is known to be APX-hard; for example,
the known NP-hardness for approximating Max Cut [11],
[12] implies a factor (5/4 − ε) hardness for this problem
(and indeed for the special case of Minimum Uncut).

Remark 1 (UG on expanders). Arora et al [13] showed
that Unique Games is easy on expanders, and gave an
O( log(1/OPT)

λ2
) approximation to the problem of minimizing

the number of unsatisfied constraints, where OPT is the
fraction of unsatisfied constraints in the optimal solution.
For the subclass of ”linear” Unique Games, they achieved
an approximation ratio of O(1/λ2) without any dependence
on OPT. A factor O(1/λ2) approximation ratio was achieved
for general Unique Games instances by Makarychev and
Makarychev [14] (assuming λ2 is large enough, they also
get a O(1/hG) approximation where hG is the Cheeger
constant). Our result achieves an approximation factor of
O(1/λr), if one is allowed nO(r) time.

For instances of ΓMAX2LIN, the paper [13] also gives
an nO(r) time algorithm that satisfies all but a fraction
O(OPT/zr(G)) of constraints, where zr(G) is the value of
the r-round Lasserre SDP relaxation of Sparsest Cut on G.
For r = 1, z1(G) = λ2. But the growth rate of zr(G), eg.

its relation to the Laplacian spectrum, was not known. �

Remark 2 (SDP gap instances). Our algorithm also shows
that the Khot-Vishnoi UG gap instance for the basic
SDP [15], has O(1) integrality gap for the lifted SDP
corresponding to poly(log n) rounds of Lasserre hierarchy.
In particular, these instances admit quasi-polynomial time
constant factor approximations. This latter result was earlier
shown by Kolla [16] using spectral techniques. Our result
shows that strong enough SDPs also suffice to tackle these
instances. �

Remark 3 (Sub-exponential algorithm for Unique Games).
In a similar vein to the above remark, applying the ABS
graph decomposition [8] to split the graph into components
with at most nε small eigenvalues while cutting very few
edges, one also gets that nε

Ω(1)

rounds of the Lasserre
hierarchy suffice to well-approximate Unique Games on
instances with at most ε fraction unsatisfied constraints. �

Independent Set in graphs. We also give a rounding
algorithm for the natural Lasserre SDP for independent set
in graphs.

Theorem 4. Given 0 < ε < 1, positive integer r, a graph
G with dmax > 3, there exists an algorithm to find an
independent set I ⊆ V such that

1) If λn−r > 1 + 1
4dmax

, then |I| > (1−ε)·OPT
2dmax

2−λn−r(L)
λn−r(L)−1 ,

2) Else |I| = OPT,

in time nO( r
ε2

).

Note that above theorem implies that on any sparse
graph, O(r)-round Lasserre relaxation of the independent
set problem is integral where r is the number of eigenvalues
of G larger than 1 + 1

4dmax
.

For reasons of space, in this extended abstract we only
sketch our results for Minimum Graph Bisection (the result
of Theorem 1 for the case of finding a non-expanding set of
size µ±o(µ)) and Unique Games. This should give a flavor
of the key ideas behind our methods. The detailed proofs
of all the results can be found in the full version of this
paper [10].

B. Our Techniques

Our results follow a unified approach, based on a SDP
relaxation of the underlying integer program. The SDP is
chosen from the Lasserre hierarchy [17], and its solution has
vectors xT (σ) corresponding to local assignments to every
subset T ⊂ V of at most r′ vertices. (Such an SDP is said to
belong to r′ rounds of the Lasserre hierarchy.) The vectors
satisfy dot product constraints corresponding to consistency
of pairs of these local assignments.

Given an optimal solution to the Lasserre SDP, we give a
rounding method based on local propagation, similar to the



rounding algorithm for Unique Games on expanders in [13].
We first find an appropriate subset S of r′ nodes (called the
seed nodes). One could simply try all such subsets in nr

′

time, though there is an nO(1) time algorithm to locate the
set S as well. Then for each assignment f to nodes in S, we
randomly extend the assignment to all nodes by assigning,
for each u ∈ V \S independently, a random value from u’s
marginal distribution based on xS∪{u} conditioned on the
assignment f to S.

After arithmetizing the performance of the rounding al-
gorithm, and making a simple but crucial observation that
lets us pass from higher order Lasserre vectors to vectors
corresponding to single vertices, the core step in the analysis
is the following: Given vectors {Xv ∈ RΥ}v∈V and an
upper bound on a positive semidefinite (PSD) quadratic form∑
u,v∈V Luv〈Xu, Xv〉 = Tr(XTXL) 6 η, place an upper

bound on the sum of the squared distance of Xu from
the span of {Xs}s∈S , i.e., the quantity

∑
u ‖X⊥S Xu‖2 =

Tr(XTX⊥S X). (Here X ∈ RΥ×V is the matrix with columns
{Xv : v ∈ V }.)

We relate the above question to the problem of column-
selection for low-rank approximations to a matrix, studied in
many recent works [18], [19], [20], [21]. It is known by the
recent works [20], [21]1 that one can pick r/ε columns S
such that Tr(XTX⊥S X) is at most 1/(1− ε) times the error
of the best rank-r approximation to X in Frobenius norm,
which equals

∑
i>r σi where the σi’s are the eigenvalues of

XTX in decreasing order. Combining this with the upper
bound Tr(XTXL) 6 η, we deduce an approximation ratio
of
(

1 + 1+ε
λr+1

)
for our algorithm. Also, the independent

rounding of each u implies, by standard Chernoff-bounds,
that any linear constraint (such as a balance condition) is
met up to lower order deviations.

Note that the above gives an approximation ratio ≈ 1 +
1/λr, which always exceeds 2. To get our improved (1 +
ε)/λr guarantee, we need a more refined analysis, based
on iterated application of column selection along with some
other ideas.

For Unique Games, a direct application of our framework
for quadratic IPs would require relating the spectrum of the
constraint graph G of the Unique Games instance to that of
the lifted graph Ĝ. There are such results known for random
lifts, for instance [22]; saying something in the case of
arbitrary lifts, however, seems very difficult.2 We therefore
resort to an indirect approach, based on embedding the set of
k vectors {xu(i)}i∈[k] for a vertex into a single vector Xu

with some nice distance preserving properties that enables
us to relate quadratic forms on the lifted graph to a proxy
form on the base constraint graph. This idea was also used in

1In fact our work [21] was motivated by the analysis in this paper.
2It is known that λr·knδ (L(Ĝ)) > δλr(L(G)) [8], but this large

multiplicative nδ slack makes this ineffective for r = no(1).

[13] for the analysis of their algorithm on expanders, where
they used an embedding based on non-linear tensoring. In
our case, we need the embedding to also preserve distances
from certain higher-dimensional subspaces (in addition to
preserving pairwise distances); this favors an embedding that
is as “linear” as possible, which we obtain by passing to a
tensor product space.

C. Related work on Lasserre SDPs in approximation

The Lasserre SDPs seem very powerful, and as mentioned
earlier, for problems shown to be hard assuming the UGC
(such as beating Goemans-Williamson for Max Cut), inte-
grality gaps are not known even for a small constant number
of rounds. A gap instance for Unique Games is known if the
Lasserre constraints are only approximately satisfied [23]. It
is interesting to contrast this with our positive result. The
error needed in the constraints for the construction in [23]
is r/(log log n)c for some c < 1, where n is the number of
vertices and r the number of rounds. Our analysis requires
the Lasserre consistency constraints are met exactly. In the
full version [10], we present an algorithm that produces such
valid Lasserre SDP solutions in time (kn)O(r)O(log(1/ε0))
with an additive error of ε0 in linear constraints, and an
objective value at most ε0 more than optimal.

Strong Lasserre integrality gaps have been constructed for
certain approximation problems that are known to be NP-
hard. Schoenebeck proved a strong negative result that even
Ω(n) rounds of the Lasserre hierarchy has an integrality gap
≈ 2 for Max 3-LIN [24]. Via reductions from this result,
Tulsiani showed gap instances for Max k-CSP (for Ω(n)
rounds), and instances with n1−o(1) gap for≈ 2

√
logn rounds

for the Independent Set and Chromatic Numbers [25].
In terms of algorithmic results, even few rounds of

Lasserre is already as strong as the SDPs used to obtain
the best known approximation algorithms for several prob-
lems — for example, 3 rounds of Lasserre is enough to
capture the ARV SDP relaxation for Sparsest Cut [26], and
Chlamtac used the third level of the Lasserre hierarchy to get
improvements for coloring 3-colorable graphs [27]. In terms
of positive results that use a larger (growing) number of
Lasserre rounds, we are aware of only two results. Chlamtac
and Singh used O(1/γ2) rounds of Lasserre hierarchy to
find an independent set of size Ω(nγ

2/8) in 3-uniform
hypergraphs with an independent set of size γn [28]. Karlin,
Mathieu, and Nguyen show that 1/ε rounds of Lasserre SDP
gives a (1+ε) approximation to the Knapsack problem [29].

However, there are mixed hierarchies, which are weaker
than Lasserre and based on combining an LP characterized
by local distributions (from the Sherali-Adams hierarchy)
with a simple SDP, that have been used for several approx-
imation algorithms. For instance, for the above-mentioned
result on independent sets in 3-uniform hypergraphs, an
nΩ(γ2) sized independent set can be found with O(1/γ2)



levels from the mixed hierarchy. Raghavendra’s result states
that for every constraint satisfaction problem, assuming the
Unique Games conjecture, the best approximation ratio is
achieved by a small number of levels from the mixed
hierarchy [30]. For further information and references on the
use of SDP and LP hierarchies in approximation algorithms,
we point the reader to the excellent book chapter [31].

In an independent work, Barak, Raghavendra, and
Steurer [32] also extend the local propagation rounding of
[13] to Lasserre SDPs Their analysis methods are rather
different from ours. Instead of column-based low-rank ma-
trix approximation, they use the graph spectrum to infer
global correlation amongst the SDP vectors from local
correlation, and use it to iteratively to argue that a random
seed set works well in the rounding. Their main result is
an additive approximation for Max 2-CSPs. Translating to
the terminology used in this paper, given a 2CSP instance
over domain size k with optimal value (fraction of satisfied
constraints) equal to v, they give an algorithm to find an
assignment with value v−O

(
k
√

1− λr
)

based on r′ � kr
rounds of the mixed hierarchy. (Here λr is the r’th smallest
eigenvalue of the normalized Laplacian of the constraint
graph; note though that λr needs to be fairly close to 1 for
the bound to kick in.) For the special case of Unique Games,
they get the better performance of v −O

(
4
√

1− λr
)

which
doesn’t degrade with k. They also get a factor O(1/λr)
approximation for minimizing the number of unsatisfied
constraints. Compared to our (1+(2+ε)/λr) approximation,
for this result they use the weaker “mixed” Sherali-Adams
SDP which enables them to achieve a runtime for solving
the SDP that has a 2O(r) type dependence on the number of
rounds r instead of our nO(r) bound. However, their runtime
has an exponential dependence on the number of labels k.

For 2CSPs, our results only apply to a restricted class
(corresponding to PSD quadratic forms)3, but we get
approximation-scheme style multiplicative guarantees for the
harder minimization objective, and can handle global linear
constraints. (Also, for Unique Games, as mentioned above
our algorithm has running time polynomial in the number
of labels k, but a worse dependence on r.) Our approach
enables us to get approximation-scheme style guarantees
for several notorious graph partitioning problems that have
eluded even APX-hardness.

II. LASSERRE HIERARCHY OF SEMIDEFINITE PROGRAMS

We present the formal definitions of the Lasserre family of
SDP relaxations [17], tailored to the setting of the problems
we are interested in, where the goal is to assign to each
vertex/variable from a set V a label from [k] = {1, 2, . . . , k}.

3Though it we are willing to tolerate some form of additive approxima-
tion, one can apply the result to any QIP after adding diagonal terms to
the quadratic form’s matrix to make it PSD.

Definition 5 (Lasserre vector set). Given a set of variables
V and a set [k] = {1, 2, . . . , k} of labels, and an integer
r > 0, a vector set x is said to satisfy r-levels of Lasserre
hierarchy constraints on k labels, denoted

x ∈ Lasserre(r)(V × [k]) ,

if it satisfies the following conditions:

1) For each set S ∈
(

V
6r+1

)
, there exists a function

xS : [k]S → RΥ that associates a vector of some
finite dimension Υ with each possible labeling of S.
We use xS(f) to denote the vector associated with the
labeling f ∈ [k]S . For singletons u ∈ V , we will use
xu(i) and xu(iu) for i ∈ [k] interchangeably.
For f ∈ [k]S and v ∈ S, we use f(v) as the label
v receives from f . Also given sets S with labeling
f ∈ [k]S and T with labeling g ∈ [k]T such that f
and g agree on S ∩ T , we use f ◦ g to denote the
labeling of S ∪ T consistent with f and g: If u ∈ S,
(f ◦ g)(u) = f(u) and vice versa.

2) ‖x∅‖2 = 1.
3) 〈xS(f), xT (g)〉 = 0 if there exists u ∈ S∩T such that

f(u) 6= g(u).
4) 〈xS(f), xT (g)〉 = 〈xA(f ′), xB(g′)〉 if S ∪T = A∪B

and f ◦ g = f ′ ◦ g′.
5) For any u ∈ V ,

∑
j∈[k] ‖xu(j)‖2 = ‖x∅‖2.

6) (implied by above constraints) For any S ∈
(

V
6r+1

)
,

u ∈ S and f ∈ [k]S\{u},
∑
g∈[k]u xS(f ◦ g) =

xS\{u}(f).

We will use X (i) to denote a matrix of size Υ× n, X (i) ∈
RΥ×V whose columns are the vectors {xu(i)}u∈V .

We now add linear constraints to the SDP formulation.

Definition 6 (Linear constraints in Lasserre SDPs). Given
a matrix B = [b1 . . . b`] ∈ R(V×[k])×` and a vector c =
(c1, . . . , c`)

T ∈ R`, x ∈ Lasserre(r)(V × [k]), is said to
satisfy linear constraints {(bi, ci)}`i=1 if the following holds
for all i ∈ [`]:

For all subsets S ∈
(
V
6r

)
and f ∈ [k]V ,∑

u∈V,g∈[k]u

〈xS(f), xu(g)〉bi(u, g) 6 ci〈xS(f), x∅〉 ,

which is equivalent to∑
u∈V,g∈[k]u

‖xS∪{u}(f ◦ g)‖2bi(u, g) 6 ci‖xS(f)‖2.

We denote the set of such x as x ∈ Lasserre(r)(V ×
[k], B6c).

Remark 4 (Convenient matrix notation). One common ex-
pression we will use throughout this paper is the following.



For matrices X ∈ RΥ×V and M ∈ RV×V :

Tr(XTXM) =
∑
u,v∈V

Mu,v〈Xu, Xv〉 .

Note that if M is positive semidefinite (denoted M � 0),
then Tr(XTXM) > 0.4

Also, if L is Laplacian matrix of an undirected graph G =
(V,E), we have

Tr(XTXL) =
∑

e={u,v}∈E

‖Xu −Xv‖2

where Xu denotes the column of X corresponding to u ∈ V .
�

The analysis of our rounding algorithm will involve projec-
tions on certain subspaces, which we define next.

Definition 7 (Projection operators). Given
x ∈ Lasserre(r)(V × [k]), we define Π :

(
V

6r+1

)
→ RΥ×Υ

as the projection matrix onto the span of {xS(f)}f∈[k]S

for given S:

ΠS ,
∑
f∈[k]S

xS(f) · xS(f)
T
.

(Here xS(f) is the unit vector in the direction of xS(f) if
xS(f) is nonzero, and 0 otherwise.)

Similarly we define P :
(

V
6r+1

)
→ RΥ×Υ as the

matrix corresponding to projection onto the span of
{xv(f)}v∈S,f∈[k]: PS ,

∑
v∈S,f∈[k] xv(f) · xv(f)

T
.

We will denote by Π⊥S = I − ΠS and P⊥S = I − PS the
projection matrices onto the respective orthogonal comple-
ments, where I denotes the identity matrix of appropriate
dimension.

III. CASE STUDY: APPROXIMATING MINIMUM
BISECTION

All our algorithmic results follow a unified method (ex-
cept small set expansion on irregular graphs and unique
games, both of which we treat separately). In this section,
we will illustrate the main ideas involved in our work in
a simplified setting, by working out progressively better
approximation ratios for the following basic, well-studied
problem: Given as input a graph G = (V,E) and an integer
size parameter µ, find a subset U ⊂ V with |U | = µ
that minimizes the number of edges between U and V \U ,
denoted ΓG(U). The special case when µ = |V |/2 and we
want to partition the vertex set into two equal parts is the
minimum bisection problem. We will loosely refer to the
general µ case also as minimum bisection.5

4The use of this inequality in various places is the reason why our
analysis only works for minimizing PSD quadratic forms.

5We will be interested in finding a set of size µ ± o(µ), so we avoid
the terminology Balanced Separator which typically refers to the variant
where Ω(n) slack is allowed in the set size.

For simplicity we will assume G is unweighted and
d-regular, however all our results hold for any weighted
undirected graph. We can formulate this problem as a binary
integer programming problem as follows:

min
x̃∈{0,1}V×[2]

∑
e={u,v}∈E

(x̃u(1)− x̃v(1))2, (1)

subject to
∑
u

x̃u(1) = µ; ∀u, x̃u(1) + x̃u(2) = 1; (2)

If we let L be the Laplacian matrix for G, we can rewrite the
objective as η , x̃(1)TLx̃(1). We will denote by L = 1

dL
the normalized Laplacian of G.

Note that the above is a quadratic integer programming
(QIP) problem with linear constraints. The somewhat pecu-
liar formulation is in anticipation of the Lasserre semidef-
inite programming relaxation for this problem, which we
describe below.

A. Lasserre relaxation for Minimum Bisection

Let b be the vector on V ×[2] with bv(1) = 1 and bv(2) =
0 for every v ∈ V . For an integer r′ > 0, the r′-round
Lasserre SDP for Minimum Bisection consists of finding
x ∈ Lasserre(r′)(V ×[k], b=µ) that minimizes the objective
function ∑

e={u,v}∈E(G)

‖xu(1)− xv(1)‖2 . (3)

It is easy to see that this is indeed a relaxation of our original
QIP formulation (1).

B. Main theorem on rounding

Let x be an (optimal) solution to the above r′-
round Lasserre SDP. We will always use η in this sec-
tion to refer to the objective value of x, i.e., η =∑
e={u,v}∈E(G) ‖xu(1)− xv(1)‖2.
Our ultimate goal in this section is to give an algorithm

to round the SDP solution x to a good cut U of size very
close to µ, and prove the below theorem.

Theorem 8. For all r > 1 and ε > 0, there exists r′ =
O
(
r
ε2

)
, such that given x ∈ Lasserre(r′)(V ×[k], b=µ) with

objective value (3) equal to η, one can find in randomized
nO(1) time, a set U ⊆ V satisfying the following two
properties w.h.p:

1) ΓG(U) 6 1+ε
min{1,λr+1(L)}η.

2) µ(1 − o(1)) = µ − O
(√

µ log(1/ε)
)
6 |U | 6 µ +

O
(√

µ log(1/ε)
)

= µ(1 + o(1)).

Since one can solve the Lasserre relaxation in nO(r′) time
we get the result claimed in the introduction: an nO(r/ε2)

time factor (1+ε)/min{λr, 1} approximation algorithm; the
formal theorem, for general (non-regular, weighted) graphs
appears in the full version. Note that if t = arg minr{r |



λr(L) > 1− ε/2}, then this gives an nOε(t) time algorithm
for approximating minimum bisection to within a (1 + ε)
factor, provided we allow O(

√
n) imbalance.

C. The rounding algorithm

Recall that the solution x ∈ Lasserre(r′)(V × [k], b=µ)
contains a vector xT (f) for each T ∈

(
V
6r′
)

and every
possible labeling of T , f ∈ [2]T of T . Our approach to
round x to a solution x̃ to the integer program (1) is similar
to the label propagation approach used in [13].

Consider fixing a set of r′ nodes, S ∈
(
V
r′

)
, and assigning

a label f(s) to every s ∈ S by choosing f ∈ [2]S with
probability ‖xS(f)‖2. (The best choice of S can be found by
brute-forcing over all of

(
V
r′

)
, since solving the Lasserre SDP

takes nO(r′) time anyway. But there is also a faster method
to find a good S, as mentioned in Theorem 11.) Conditional
on choosing a specific labeling f to S, we propagate the
labeling to other nodes as follows: Independently for each
u ∈ V , choose i ∈ [2] and assign x̃u(i)← 1 with probability

Pr [x̃u(i) = 1] =
‖xS∪{u}(f ◦ iu)‖2

‖xS(f)‖2
=
〈xS(f), xu(i)〉
‖xS(f)‖

.

Observe that if u ∈ S, label of u will always be f(u).
Finally, output U = {u | x̃u(1) = 1} as the cut. Below ΠS

denotes the projection matrix from Definition 7.

Lemma 9. For the above rounding procedure, the size of
the cut produced ΓG(U) satisfies

E [ΓG(U)] = η +
∑

(u,v)∈E

〈Π⊥S xu(1),Π⊥S xv(1))〉 . (4)

Proof: Note that for u 6= v, and i, j ∈ [2],

Pr [x̃u(i) = 1 ∧ x̃v(j) = 1]

=
∑
f

‖xS(f)‖2 〈xS(f), xu(i)〉
‖xS(f)‖

〈xS(f), xv(j)〉
‖xS(f)‖

=
∑
f

〈xS(f), xu(i)〉〈xS(f), xv(j)〉.

Since {xS(f)}f is an orthonormal basis, the above expres-
sion can be written as the inner product of projections of
xu(i) and xv(j) onto the span of {xS(f)}f∈[2]S , which we
denote by ΠS . Let us now calculate the expected number
ΓG(U) of edges cut by this rounding. It is slightly more
convenient to treat edges e = {u, v} as two directed edges
(u, v) and (v, u), and count directed edges (u, v) with u ∈ U
and v ∈ V \ U in the cut. Therefore,

E [ΓG(U)] =
∑

(u,v)∈E

〈ΠSxu(1),ΠSxv(2)〉

which is equal to η +
∑

(u,v)∈E〈Π⊥S xu(1),Π⊥S xv(1)〉.
Note that the matrix ΠS depends on vectors xS(f) which

are hard to control because we do not have any constraint
relating xS(f) to a known matrix. The main driving force
behind all our results is the following fact, which follows
since given any u ∈ S and i ∈ [2], xu(i) =

∑
f :f(u)=i xS(f)

by Lasserre constraints.

Observation 10. For all S ∈
(
V
r′

)
,

span
(
{xS(f)}f∈[2]S

)
⊇ span

(
{xu(i)}u∈S,i∈[2]

)
.

Equivalently for PS being the projection matrix onto span
of {xu(i)}u∈S,i∈[2], PS � ΠS .

Thus we will try to upper bound the term in (4) by
replacing Π⊥S with P⊥S , but we cannot directly perform
this switch: 〈P⊥S xu(i), P⊥S xv(j)〉 might be negative while
Π⊥S xu(i) = 0.

D. Factor 1 + 1
λr

approximation of cut value

Our first bound is by directly upper bounding (4) in terms
of ‖Π⊥S xu(i)‖2 6 ‖P⊥S xu(i)‖2. Using Cauchy-Schwarz and
Arithmetic-Geometric Mean inequalities, (4) implies that the
expected number of edges cut is upper bounded by

η + d
∑
u

‖Π⊥S xu(1)‖2 6 η + d
∑
u

‖P⊥S xu(1)‖2 .

Now define Xu , xu(1), and let X ∈ RΥ×V be the matrix
with columns Xu. By (3), we have the objective value η =

Tr(XTXL). Let XΠ
S ,

∑
u∈S XuXu

T
be the projection

matrix onto the span of {Xu}u∈S . Since this set is a subset
of {xu(i)}u∈S,i∈[2], we have XΠ

S � PS . Therefore, we can
bound (5) further as

E [number of edges cut] 6 η + d
∑
u

‖X⊥S Xu‖2. (5)

To get the best upper bound, we want to pick S ∈
(
V
r′

)
to minimize

∑
u∈V ‖X⊥S Xu‖2. It is a well known fact

that among all projection matrices M of rank r′ (not
necessarily restricted to projection onto columns of X),
the minimum value of

∑
u ‖M⊥Xu‖2 = Tr(XTM⊥X)

is achieved by matrix M projecting onto the space of the
largest r′ singular vectors of X . Further, this minimum value
equals

∑
i>r′+1 σi where σi = σi(X) denotes the squared

ith largest singular value of X (equivalently σi(X) is the
ith largest eigenvalue of XTX). Hence Tr(XTX⊥S X) >∑
i>r′+1 σi for every choice of S. The following theorem

from [21] shows the existence of S which comes close to
this lower bound:

Theorem 11. [21] For every real matrix X with column
set V , and positive integers r 6 r′, we have

δr′(X) , min
S∈(Vr′)

Tr(XTX⊥S X) 6
r′ + 1

r′ − r + 1

( ∑
i>r+1

σi

)
.



In particular, for all ε ∈ (0, 1), δr/ε 6 1
1−ε

(∑
i>r+1 σi

)
.

Further one can find a set S ∈
(
V
r′

)
achieving the claimed

bounds in deterministic O(rn4) time.

Remark 5. Prior to our paper [21], it was shown in [20]
that δr(2+ε)/ε 6 (1 + ε)

(∑
i>r+1 σi

)
. The improvement

in the bound on r′ from 2r/ε to r/ε to achieve (1 + ε)
approximation is not of major significance to our application,
but since the tight bound is now available, we decided to
state and use it. �

Remark 6 (Running time of our algorithms). If the Lasserre
SDP can be solved faster than nO(r′) time, perhaps in
exp(O(r′))nc time for some absolute constant c, then the
fact that we can find S deterministically in only O(n5) time
would lead to a similar runtime for the overall algorithm. �

Picking the subset S∗ ∈
(
V
r′

)
that achieves the bound (5))

guaranteed by Theorem 11, we have

Tr(XTX⊥S∗X) = δ r
ε
(X) 6 (1− ε)−1

∑
i>r

σi .

In order to relate this quantity to the SDP objective value η =
Tr(XTXL), we use the fact that Tr(XTXL) is minimized
when eigenvectors of XTX and L are matched in reverse
order: ith largest eigenvector of XTX corresponds to ith

smallest eigenvector of L. Letting 0 = λ1(L) 6 λ2(L) 6
. . . 6 λn(L) 6 2 be the eigenvalues of normalized graph
Laplacian matrix, L = 1

dL, we have

η

d
=

1

d
Tr(XTXL) >

∑
i

σi(X)λi(L)

>
∑
i>r+1

σi(X)λr+1(L) > (1− ε)λr+1(L)δ r
ε
(X).

Plugging this into (5), we can conclude our first bound:

Theorem 12. For all positive integers r and ε ∈ (0, 1),
given SDP solution x ∈ Lasserre(dr/εe)(V × [k], b=µ), the
rounding algorithm given in Section III-C cuts at most(

1 +
1

(1− ε)λr+1(L)

) ∑
e=(u,v)∈E

‖xu(1)− xv(1)‖2

edges in expectation. In particular, the algorithm cuts at
most a factor

(
1 + 1

(1−ε)λr+1(L)

)
more edges than the SDP

objective value of the solution x. 6

Note that λn(L) 6 2, hence even if we use n-rounds of
Lasserre relaxation, for which x is an integral solution, we
can only show an upper bound > 3

2 . Although this is too
weak by itself for our purposes, this bound will be crucial
to obtain our final bound.

6We will later argue that the cut will also meet the balance requirement
up to o(µ) vertices.

E. Improved analysis and factor 1
λr

approximation on cut
value

First notice that (4) can be written as

E [number of edges cut] = Tr(XTΠ⊥SX)+Tr(XTΠSXL) .
(6)

If value of this expression is larger than η
(1−ε)λr+1

+ ηε,
then value of Tr(XTΠSXL) has to be larger than εη due to
the bound we proved on Tr(XTΠ⊥SX). Consider choosing
another subset T that achieves the bound δr(Π

⊥
SX). The

crucial observation is that distances between neighboring
nodes on vectors Π⊥SX has decreased by an additive factor
of ηε,

Tr(XTΠ⊥SXL) = Tr(XTXL)−Tr(XTΠSXL) < η(1− ε)

so that Tr(XTΠ⊥S∪TX) < (1−ε) η
(1−ε)λr+1

. Now, if we run
the rounding algorithm with S ∪ T as the seed set, and (6)
with S ∪T in place of S is larger than η

(1−ε)λr+1
+ ηε, then

Tr(XTΠS∪TXL) > 2εη. Hence

Tr(XTΠ⊥S∪TXL) 6 Tr(XTXL)− Tr(XTΠS∪TXL)

< η(1− 2ε) . (7)

Picking another set T ′, we will have Tr(XTΠ⊥S∪T∪T ′X) <
(1 − 2ε) η

(1−ε)λr+1
. Continuing this process, if the quantity

(6) is not upper bounded by η
(1−ε)λr+1

+ ηε after d 1
εe many

such iterations, then the total projection distance becomes

Tr(XTΠ⊥S∪T∪...X) < (1− d1/εeε) η

(1− ε)λr+1
6 0

which is a contradiction. For formal statement and proof in
a more general setting, see full version.

Theorem 13. For all integers r > 1 and ε ∈ (0, 1), for an
integer r′ = O

(
r
ε2

)
, the following holds. Given an optimal

SDP solution x ∈ Lasserre(r′)(V × [k], b=µ), the expected
number of edges cut by the solution obtained by running
Algorithm 1 on the seed set returned by Algorithm 2 is at
most (1+ε)/min{1, λr+1(L)} times the size of the optimal
cut with µ nodes on one side. (Here λr+1(L) is the (r+1)’th
smallest eigenvalue of the normalized Laplacian L = 1

dL of
the G.)

F. Bounding Set Size

We now analyze the balance of the cut, and show that we
can ensure that |U | = µ± o(µ) in addition to ΓG(U) being
close to the expected bound of Theorem 13 (and similarly
for Theorem 12).

Let S∗ fixed to be arg minS∈(Vr′)
Tr(XTX⊥S X). We will

show that conditioned on finding cuts with small ΓG(U), the
probability that one of them has |U | ≈ µ is bounded away
from zero. We can use a simple Markov bound to show
that there is a non-zero probability that both cut size and
set size are within 3-factor of corresponding bounds. But



by exploiting the independence in our rounding algorithm
and Lasserre relaxations of linear constraints, we can do
much better. Note that in the r′-round Lasserre relaxation,
for each f ∈ [2]S

∗
, due to the set size constraint in original

IP formulation, x satisfies:∑
u

x̃u(1) = µ =⇒
∑
u

〈xS∗(f), xu(1)〉 = µ‖xS∗(f)‖2 .

This implies that conditioned on the choice of f , the
expectation of

∑
u x̃u(1) is µ and events x̃u(1) = 1 for

various u are independent. Applying the Chernoff bound,
we get

Prx̃

[ ∣∣∣∑
u

x̃u(1)− µ
∣∣∣ > 2

√
µ log

1

ζ

]
6 o(ζ) 6

ζ

3
.

Consider choosing f ∈ [2]S
∗

so that
E
[
number of edges cut f

]
6 E

[
number of edges cut

]
, b.

By Markov inequality, if we pick such an f ,
Pr
[
number of edges cut > (1 + ζ)b

]
6 1 − ζ

2 , where
the probability is over the random propagation once S∗ and
f are fixed.

Hence with probability at least ζ6 , the solution x̃ will yield
a cut U with ΓG(U) 6 (1 + ζ)b and size |U | in the range
µ± 2

√
µ log 1

ζ . Taking ζ = ε and repeating this procedure

O
(
ε−1 log n

)
times, we get a high probability statement and

finish our main Theorem 8 on minimum bisection.

Algorithm 1 Algorithm for labeling in time O
(
kr
′
+ n

)
.

Input: S∗ ⊆ V of size at most r′, x ∈ Lasserre(r′)(V ×
[k]).
Output: x̃ ∈ {0, 1}V×[k].
Procedure:

1) Choose f ∈ [k]S
∗

with probability ‖xS∗(f)‖2.
2) Label every node u ∈ V by choosing a label j ∈ [k]

with probability
〈xxS∗ (f),xu(j)〉
‖xS∗ (f)‖2 .

IV. PROOF SKETCH FOR THEOREM 3 (UNIQUE GAMES)

In this section, we will give a sketch of Theorem 3’s proof.
Given a Unique Games instance with constraint graph G =
(V,E), label set [k], and bijective constraints πe : [k] →
[k] for each edge e ∈ E, we consider the following QIP
formulation:

min
x̃

∑
e={u,v}∈E

we ·
1

2

∑
i∈[k]

(x̃u(i)− x̃v(πe(i)))2,

subject to
∑
i∈[k]

x̃u(i) = 1 ∀u ∈ V,

x̃ ∈ {0, 1}V×[k] .

Algorithm 2 Algorithm for finding seed set in time O(n5)
deterministically.

Input: Positive integers r, r′ = r
ε2 , x ∈ Lasserre(r′)(V ×

[k]) and a PSD matrix L ∈ R(V×[k])×(V×[k]).
Output: Seed set S∗ ⊆ V of size at most r′ satisfying
Theorem 13.
Procedure:

1) Let S∗ ← ∅.
2) Repeat 1/ε times:

a) Find new r
ε -many seeds T̃ ∈

(
V×[k]
r/ε

)
using

deterministic column selection algorithm given
in [21] on matrix diag(L)1/2Π⊥S∗X .

b) T ←
{
u

∣∣∣∣∃j ∈ [k] : (u, j) ∈ T̃
}

.

c) S∗ ← S∗
⋃
T .

Let x ∈ Lasserre(r′)(V × [k]) be the vector solution (for
the Lasserre SDP relaxation of the above QIP) satisfying
r′ = O(r/ε)-levels of Lasserre hierarchy constraints with
objective value equal to:

η ,
1

2

∑
e={u,v}∈E

∑
f

‖xu(f)− xv(πe(f))‖2 .

For convenience we will assume below that G is unweighted
and d-regular. We stress though that our results do not
require these assumptions, and the proof in the full ver-
sion [10] works with general instances.

A straightforward analysis of the rounding procedure
Algorithm 1 yields the following bound on number of
unsatisfied constraints,

η + d
∑
u

∑
f

‖P⊥S xu(f)‖2, (8)

where PS denotes the projection matrix onto span of vectors
{xs(g)}s∈S,g for seed set S chosen using Algorithm 2.

As mentioned in the introduction, bounding this quantity
requires the knowledge of lifted graph, Ĝ. Instead we use
an embedding of vectors on Ĝ to G. Our embedding is as
follows. Assume that the vectors xu(f) belong to Rm. Let
e1, e2, . . . , em ∈ Rm be the standard basis vectors. Define
Xu ∈ Rm ⊗ Rm as

Xu =
m∑
i=1

∑
f∈[k]u

〈xu(f), ei〉xu(f)⊗ ei . (9)

For proof of the following theorem, see the full version [10].

Theorem 14 (A useful embedding). Given vectors x ∈
Rm×(V×[k]) with the property that, for any u ∈ V , whenever
f, g ∈ [k]u are two different labellings of u, f 6= g,

〈xu(f), xu(g)〉 = 0.



Then the embedding given in (9) satisfies the following
properties:

1) For any u ∈ V , ‖Xu‖2 =
∑
f ‖xu(f)‖2.

2) For any u, v ∈ V and any permutation π ∈ Sym([k]):∑
i∈[k]

‖xu(iu)− xv(π(i)
v
)‖2 > 1

2
‖Xu −Xv‖2.

3) For any set S ⊆ V and any node u ∈ V , if we
let PS be the projection matrix onto the span of
{xs(f)}s∈S,f∈[k]:

‖X⊥S Xu‖2 >
∑
f∈[k]u

‖P⊥S xu(f)‖2.

With this embedding, we can easily bound (8):

d
∑
u

∑
f

‖P⊥S xu(f)‖2 6 d
∑
u

‖X⊥S Xu‖2

6
1 + ε

λr+1

∑
e=(u,v)∈E

‖Xu −Xv‖2.

Finally using the fact that
∑
e=(u,v)∈E ‖Xu − Xv‖2 is

bounded by 2
∑
e=(u,v)∈E

∑
f ‖xu(f)−xv(πe(f))‖2 = 2η,

we obtain the bound given in Theorem 3.
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